
Visualizing the Scripts of Data Wrangling

With SOMNUS

Kai Xiong , Siwei Fu , Guoming Ding, Zhongsu Luo, Rong Yu, Wei Chen ,

Hujun Bao , and Yingcai Wu

Abstract—Data workers use various scripting languages for data transformation, such as SAS, R, and Python. However, understanding

intricate code pieces requires advanced programming skills, which hinders data workers from grasping the idea of data transformation at

ease. Program visualization is beneficial for debugging and education and has the potential to illustrate transformations intuitively and

interactively. In this article, we explore visualization design for demonstrating the semantics of code pieces in the context of data

transformation. First, to depict individual data transformations, we structure a design space by two primary dimensions, i.e., key

parameters to encode and possible visual channels to bemapped. Then, we derive a collection of 23 glyphs that visualize the semantics

of transformations. Next, we design a pipeline, namedSOMNUS, that provides an overview of the creation and evolution of data tables

using a provenance graph. At the same time, it allows detailed investigation of individual transformations. User feedback on SOMNUS is

positive. Our study participants achieved better accuracy with less time using SOMNUS, and preferred it over carefully-crafted textual

description. Further, we provide two example applications to demonstrate the utility and versatility of SOMNUS.

Index Terms—Program understanding, data transformation, visualization design

Ç

1 INTRODUCTION

SCRIPTING languages including SAS, R, and Python have
been widely accepted by data workers for data transfor-

mation. They usually seek to understand the semantics of
scripts in various scenarios. For example, validation (or
called double-checking in some companies and laborato-
ries) is important for data scientists. A data scientist might
seek to understand code pieces written by others, then
locate and correct possible mistakes. Understanding the
semantics of an intricate script, however, requires advanced
programming skills. And sometimes, the process is tedious
and error-prone [48], [62], [71].

A number of program visualization techniques have
been proposed for debugging and communication. For
example, some techniques, such as Whyline [45], Time-
lapse [14], and FireCrystal [59], utilize visualizations to help

programmers identify and fix bugs. Those debugging tools
focus on revealing the runtime behavior, such as the values
of objects and variables, on allowing programmers to
inspect the program state. However, depicting program
states benefits little in communicating the semantics of code
pieces. Others, such as algorithm visualizations [12], [66]
and automatic generation of flowcharts [15], [17], [69], aim
to help learners understand the flow of algorithms. How-
ever, little attention has been paid to illustrating the process
of data transformation.

In this work, we explore visualization design for depicting
the semantics of code pieces in the context of data transforma-
tion. To present individual data transformations, we first out-
line a design space consisting of two primary dimensions,
i.e., key parameters to encode and potential visual channels
that can be mapped. Then, we propose a collection of 23
glyphs that demonstrates the semantics of transformations.
Given a code piece containing a series of functions, data
tables are created and changed. To illustrate the evolution of
tables, we contribute the design and implementation of SOM-

NUS, a pipeline that accepts a script and data tables as input
and results in a graph model where nodes are tables while
edges are data transformations. SOMNUS consists of two main
components, i.e., Program Adaptor and Visualization Gener-
ator. The Program Adaptor parses code pieces, generates
input andoutput tables for each statement, and infer transfor-
mations based on rules. On the other hand, the Visualization
Generator creates visual representations to illustrate data
provenance.We claim that SOMNUS facilitates the understand-
ing of intricate code pieces, including the semantics of indi-
vidual operations and table dependencies of the entire data
wrangling process. To some extent, SOMNUS supports some
higher-level tasks such as helping users debug programs of
data wrangling and correct errors in the code. Besides, the

� Kai Xiong, Guoming Ding, Wei Chen, Hujun Bao, and Yingcai Wu are
with the State Key Lab of CAD&CG, Zhejiang University, Hangzhou
310027, China, and also with Zhejiang Lab, Hangzhou 311121, China.
E-mail: {kaixiong, dinggm, chenvis, ycwu}@zju.edu.cn, bao@cad.zju.
edu.cn.

� Siwei Fu and Rong Yu are with Zhejiang Lab, Hangzhou 311121, China.
E-mail: fusiwei339@gmail.com, 1721298964@qq.com.

� Zhongsu Luo is with the Zhejiang University of Technology, Hangzhou
310023, China, and also with Zhejiang Lab, Hangzhou 311121, China.
E-mail: rickyluozs@gmail.com.

Manuscript received 12 Sept. 2021; revised 3 Jan. 2022; accepted 4 Jan. 2022.
Date of publication 25 Jan. 2022; date of current version 8 May 2023.
This work was supported in part by NSFC under Grants 62072400 and
62002331, and in part by the Collaborative Innovation Center of Artificial
Intelligence by MOE and Zhejiang Provincial Government (ZJU). This work
was supported in part by Zhejiang Lab under Grants 2021KE0AC02 and
2020KE0AA02.
(Corresponding authors: Yingcai Wu and Siwei Fu.)
Recommended for acceptance by M. Meyer.
Digital Object Identifier no. 10.1109/TVCG.2022.3144975

2950 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 6, JUNE 2023

1077-2626 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8203-9667
https://orcid.org/0000-0002-8203-9667
https://orcid.org/0000-0002-8203-9667
https://orcid.org/0000-0002-8203-9667
https://orcid.org/0000-0002-8203-9667
https://orcid.org/0000-0001-8329-2448
https://orcid.org/0000-0001-8329-2448
https://orcid.org/0000-0001-8329-2448
https://orcid.org/0000-0001-8329-2448
https://orcid.org/0000-0001-8329-2448
https://orcid.org/0000-0002-8365-4741
https://orcid.org/0000-0002-8365-4741
https://orcid.org/0000-0002-8365-4741
https://orcid.org/0000-0002-8365-4741
https://orcid.org/0000-0002-8365-4741
https://orcid.org/0000-0002-2662-0334
https://orcid.org/0000-0002-2662-0334
https://orcid.org/0000-0002-2662-0334
https://orcid.org/0000-0002-2662-0334
https://orcid.org/0000-0002-2662-0334
https://orcid.org/0000-0002-1119-3237
https://orcid.org/0000-0002-1119-3237
https://orcid.org/0000-0002-1119-3237
https://orcid.org/0000-0002-1119-3237
https://orcid.org/0000-0002-1119-3237
mailto:kaixiong@zju.edu.cn
mailto:dinggm@zju.edu.cn
mailto:chenvis@zju.edu.cn
mailto:ycwu@zju.edu.cn
mailto:bao@cad.zju.edu.cn
mailto:bao@cad.zju.edu.cn
mailto:fusiwei339@gmail.com
mailto:1721298964@qq.com
mailto:rickyluozs@gmail.com

idea of SOMNUS is general and can be adapted to various
scripting languages, including R, Python, etc.

To evaluate the effectiveness of the glyph design and SOM-

NUS, we conducted a controlled study to compare our visual
representations with carefully-crafted textual descriptions.
The results show that our participants can understand com-
plex wrangling scripts more accurately in a shorter time and
prefer our visualizations in terms of helpfulness and
interpretability. In addition, we demonstrate the utility and
versatility of SOMNUS with two example applications. The first
application shows how SOMNUS can be adapted to Python and
facilitates the validation of a piece of wrangling script. As for
the second application, SOMNUS is adapted to R and used to
supportMORPHEUS [25] in interactive data transformation.

To conclude, the contributions in this paper include: 1) a
design space consisting of two dimensions that guide the
design of a collection of 23 glyphs, 2) a pipeline, called SOMNUS,
that visualizes the creation and evolution of data tables across
a series of transformations, 3) a controlled study that evalu-
ates how users perform with visualization and text using
comparison tasks, and 4) two example applications that show-
case how SOMNUS can benefit different usage scenarios.

2 RELATED WORK

2.1 Program Visualization

Program visualization refers to “the visualization of actual
program code or data structures in either static or dynamic
form” [77]. In program visualization, different audiences
vary in analytical tasks, which require tailored visual repre-
sentations [16]. For example, software engineers and data
scientists are dedicated to development activities including
programming, debugging, testing, etc. Systems focusing on
these activities usually need to visualize the runtime behav-
ior of the program including object states, function calls, etc.
Another example is that, data workers [4], [52] and educa-
tion practitioners expect an effective method for compre-
hending or learning the semantics of a program. We note
that the concerns of different roles are not strictly differenti-
ated. For example, data workers can also develop a wran-
gling program to find new insights on data. In short,
program visualization is usually used for debugging and
education tasks [36].

Many debugging tools leverage visualizations to help
developers identify and fix bugs. Some of them, such as
Hdpv [72], Heapviz [3], and Anteater [24], present task-spe-
cific or code-related information about the execution by giv-
ing a forest view. Others can reveal the runtime behavior,
such as DDD [82], deet [32], ZStep 95 [50], and Visu-
Flow [57]. Whyline [45] and Theseus [49] introduce visual-
izations within integrated development environments,
while FireCrystal [59] and Timelapse [14] focus on visualiz-
ing interactive behaviors on web pages. Hoffswell et al. [35]
propose visual debugging techniques to inspect program
states for reactive data visualization. A number of works [7],
[8], [33], [36], [73] leverage in-situ visualizations to display
the program behavior.

SOMNUS can be used for debugging the process of data
transformation. However, our technique differs from prior
work in two aspects. First, instead of visualizing internal
states or variables of programs, SOMNUS shows the semantics

of code pieces, which involves input and output tables, the
type of data transformation, and parameters of functions. Sec-
ond, data presented in the aforementioned approaches are
generic types such as string and numbers. On the contrary,
data, in the context of data transformation, means 2-D data
tables consisting of columns and rows. The presentation of 2-
D data tables ismore challenging than generic data types.

Some program visualization systems are designed for
education. They intend to improve students’ understanding
of particular aspects of programs [77]. Online Python
Tutor [29] is a web-based visualization tool that illustrates
the runtime state of various data structures, which can be a
valuable pedagogical aid for teaching Computer Science
courses. Algorithm visualization has been a hot research
topic as having a significant impact on students learning
behavior [28] and being promising for facilitating educa-
tion [65]. A variety of algorithm visualizations [12], [18],
[31], [66] depict program behavior on every step to facilitate
understanding the program. Some tools automatically con-
vert source code to flow charts, including Visustin v7 [60],
AutoFlowchart [69], code2flow [17], Flowgen [46], and
VizMe [15]. The aforementioned approaches are explicitly
designed for some algorithms or applications. Nevertheless,
none of them are proposed in the context of data transfor-
mation. In this paper, we design and implement SOMNUS

that the creation of evolution of data tables across a series of
transformations.

2.2 Data Wrangling

Data wrangling is an arduous process of transforming,
reformatting, and integrating data to make it more palatable
for miscellaneous downstream purposes, including visuali-
zation and analysis [42]. Many toolkits written in R (e.g.,
dplyr [79], tidyr [80]) or Python (e.g., Pandas [64]) have
been proposed to support the process. These toolkits pro-
vide excellent expressiveness for data workers to wangle
data. However, for data workers who are not proficient in R
or Python, learning a new programming language or tool-
kits for wrangling tasks would spend substantial time and
effort [67].

To lower the barrier of data wrangling, various interac-
tive systems and prototypes are proposed. Microsoft Excel,
Tableau Prep Builder [70], and OpenRefine [37] provide a
menu-based GUI for users to iteratively clean, transform,
and integrate data. Some systems embed a recommendation
engine to suggest possible transformations. Data Wran-
gler [30], [42] and its commercial successor Trifacta [76] rec-
ommend transformations based on users’ manipulation.
The others, such as Foofah [39] and Wrex [22], borrow ideas
from programming by example that synthesizes code pieces
for data transformation based on a small illustrative exam-
ple provided by users. Some systems support wrangling for
graphs, websites, etc. For example, Ploceus [54], Orion [34],
and Origraph [10] support graph editing and construction.
On the other hand, Vegemite [51], Dataxformer [2], [55],
and WebRelate [38], are designed to transform data from
different websites.

The aforementioned approaches assist data workers in
conducting data transformations. SOMNUS, on the other hand,
targets presenting the process of data transformation. Some
tools, such as Tableau Prep Builder [70], OpenRefine [37],

XIONG ETAL.: VISUALIZING THE SCRIPTS OF DATAWRANGLINGWITH SOMNUS 2951

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

Data Wrangler [30], [42], and Trifacta [76], record and pres-
ent the process of data transformation using textual descrip-
tions. We argue that our visualization design is easier to
understand and more effective than textual descriptions,
and we report the comparison in Section 6 to justify the
argument.

Kasica et al. [43] formed 21 types of operations based on a
multi-table framework for data wrangling by two dimen-
sions, i.e., three data types (rows, columns, and tables) and
five operations (create, delete, transform, separate, and com-
bine). Furthermore, each type of operation is represented by
an intuitive icon. However, these icons are not mapped to
data. Inspired by these icons, we design our glyphs by sup-
plementing them with parameters and additional types of
visual channels to present the semantics of transformation
operations.

2.3 Provenance

Provenance records the history of changes and advances
during analysis [63]. Kandel et al. [41] emphasized the sig-
nificance of capturing provenance from data quality opera-
tions and wrangling workflows when data workers share
their data and scripts.

A number of works have been proposed to capture and
visualize data provenance. For example, Tableau Prep
Builder [70] provides an icon for each operation in a data
flow chart. Although these icons are easy to understand,
they can not visualize the parameters of operations, such as
the specificity of which tables/rows/columns are trans-
formed and how. By contrast, our glyph design can visualize
both the type of data transformation and its parameters,
which facilitates the comprehension of semantics because it
reveals more details on data changes [53]. TACO [58] is a
visual comparison tool for investigating the differences and
changes between multiple tabular data over time. However,
it focuses on quantitative homogeneous tables and does not
support visualizing complex data transformations, including
fold and unfold. SOMNUS, on the contrary, focuses on visualiz-
ing the semantics of scripts and supports a wide range of
data transformations mentioned by Kasica et al. [43]. Some
tools leverage animations to visualize data provenance. Data
Tweening [44] generates intermediate results for each data
transformation in a SQL query session, facilitating the under-
standing and learning of complex transformations. Datama-
tions [61] explains the transformation steps of a data analysis
pipeline by automatically generating a looping animated
GIF from code. Animation is useful for communication.
However, the exploration of animation is slower as users
often replay the animation dozens of times, and they can not
control the animation at their own pace [27]. Additionally,
those animation tools focus on presenting the data prove-
nance of a single table. In contrast, our work utilizes node-
link graphs with glyphs to illustrate data provenance, which
can better present the process of data transformations and
portray the data provenance of multi-tables simultaneously.

3 DESIGN REQUIREMENT

Our goal is to design a set of visual representations to help
data workers understand and communicate a script of data
transformation. To this end, we collaborate with two data

analysts in a national research lab who have at least three
years of expertise in data science. Following Munzner’s
guidelines [56], we conducted three rounds of interviews to
iteratively extract design requirements. Our interviews
focused on their working scenarios, such as double-check-
ing, where they are required to understand the semantics of
wrangling scripts. One major challenge is that they often
need to recall or look up the usage and syntax of various
functions. One analyst reported, “I like Python. But sometimes
I need to understand scripts written in R.” He added, “Cheat
sheets are useful (to understand R functions) in many cases. I
may also search in Google and RDocumentation1 to understand
advanced parameters.” However, there is a comprehension
gap between the usage of functions and the semantics of
practical code. One analyst complained that he still needs to
figure out how a line of code works on data after under-
standing the R function. In addition, the understanding of
individual functions helps little in revealing the entire
wrangling process. In light of these complaints and feed-
backs collected from interviews, we summarized the follow-
ing design requirements. Particularly, R1 to R4 target the
design of glyphs presenting individual data transforma-
tions, while R5 to R7 guide the design of SOMNUS.

R1: Present the Semantics: To help data workers under-
stand a function, our visualization design should
precisely present the semantics, including the func-
tion name, input, output, and parameters of a func-
tion. As the number of functions could be large,
designing visualization for each function may bur-
den recognition. Instead, we should present the type
of data transformation to which the function belongs.
We distinguish between “data transformation” and
“function,” as the former refers to a manipulation
categorized in Kasica et al. [43] while function corre-
sponds to a method in a programming language.

R2: Link with Data: When writing scripts, data workers
usually need to “look at” data tables by printing out
a table or temporary results. One analyst usually
works with Jupyter[40], and he commented, “I like to
print out results to verify the operations.”Therefore,
besides function-specific information, the visualiza-
tion should reflect detailed information of a table,
including content, shape, name, etc.

R3: Depict Necessary Information: Much information is
involved in a function, such as function parameters,
input and output data tables. We note that not all
parameters are essential. Similarly, when a table is
large, illustrating all its content is impossible and
unnecessary. As a result, we should elicit and encode
critical information from a function and representa-
tive content in a table.

R4: Keep Encoding Consistent: Glyphs in SOMNUS should
have consistent visual encodings. When visualizing
a sequence of functions, consistent visual encoding
facilitates understanding each data transformation
and the entire procedure.

R5: Reveal Table Provenance: Data tables are evolved and
correlated through functions. For example, an output

1. https://www.rdocumentation.org/

2952 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 6, JUNE 2023

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

https://www.rdocumentation.org/

table of a data transformation may serve as input for
another, and so forth. Data provenance records how
data was created and changed, which is significant
in tracing data processing changes back to their orig-
inal sources [11]. As one analyst noted, “Some opera-
tions (such as join) rely on multiple tables. Displaying
how tables are correlated is useful in debugging.”Hence,
the visualization should provide an overview of the
entire data provenance.

R6: Dig into Details: Data workers usually need to vali-
date a series of functions. Hence, they seek to grasp
detailed information on each data transformation.
Our visualization should allow users to switch
between an overview and a detailed view of individ-
ual transformations.

R7: Independent of Programming Languages: Data workers
may use various toolkits for data transformation,
such as dplyr [79] in R and Pandas [64] in Python. To
ensure generalizability, our visualization design
should be independent of toolkits and programming
languages.

4 DESIGN OF GLYPHS

Guided by the aforementioned design requirements, we
design a collection of glyphs that presents the semantics of
functions. To answer questions like, “which information shall
we encode” and “which visual channel can be mapped,” we
structure the design space by two primary dimensions, i.e.,
the type of parameters and potential visual channels.

4.1 Parameters Space

The analysis of toolkits helps us identify key information
that should be encoded in the design of glyphs (R1, R3). In
this paper, we focus on three packages in R and Python, i.e.,
dplyr, tidyr, and Pandas, because they all target data trans-
formation and are open-source in nature. We have exam-
ined 160 functions in total, where 84 are from dplyr, 23 from
tidyr, and 53 from Pandas. We read the official documenta-
tion of these functions, reveal semantics under different
parameters, and map them to the type of transformations.
Moreover, we run these functions with different parameters
to understand how parameters affect the transformation
results. Finally, we categorize six key parameters that
should be mapped to visual channels.

Function Name reflects which operation does the function
targets. Since the name does not have a one-to-one mapping
with data transformations, the information, in some cases,
benefits little in communicating the semantics of a function.
For example, the select function in dplyr can be mapped to
three different transformations, i.e., Delete Columns, Rear-
range, and Transform Columns, depending on parameters
and data tables. We do not emphasize function names in
our visualization design.

Data Tables are described as variables in the script and
are input and output of a function. We identify a variable
string as a table name. Data tables are stored in a well-
designed data structure, e.g., data.frame in R or DataFrame
in Python, and can vary in dimensions In this paper, we
focus on 2-dimension tables, which are collections of rows
and columns.

Explicit Columns/Rows are the columns/rows explicitly
mentioned as parameters in functions. Explicit columns are
usually referred to using column names, while explicit rows
are mentioned using row indexes. Taking the statement as an
example, tree2=arrange(trees, Girth), the parameter Girth is the
name of an explicit column in the table trees. Another exam-
ple is that, in the statementmtcars_temp=slice(mtcars, 1, 5), the
parameters 1, 5 are two-row indexes of the table mtcars. The
quantities of explicit columns and rows are usually limited.
Since they are key information in a function, they should be
illustrated and highlighted in the glyph design.

Implicit Columns/Rows are not listed as parameters in a
function. Rather, they are selected in the data transforma-
tion based on filtering criteria. For example, when deleting
duplicate rows, rows with identical values are compared
and filtered. The presentation of implicit columns/rows is
beneficial for understanding data transformation. Because
the volume of implicit elements is usually large, depicting
all these is virtually impossible. As a result, we should select
and encode representative ones in the glyph.

Contextual Columns/Rows are not involved in a data trans-
formation. Specifically, they do not meet filtering criteria
are not selected during transformation. Similar to explicit
and implicit elements, we argue that context is also useful
for communicating data transformation. For example, con-
textual columns keep unchanged when deleting a column
to show a contrast to the deleted one [43]. Similar to implicit
elements, we should encode a limited number of contexts.

Transformation Parameters Beside the type of data object, a
function usually includes a number of parameters to pre-
cisely acknowledge function details. They can be inline
functions (e.g., sum, min, regular expression, etc.), mathe-
matical operators (e.g., “+,” “-,” etc.), or transformation-spe-
cific identifiers (e.g., separator in separate and unite). The
visualization of these parameters is critical to revealing sub-
tle differences among transformations.

4.2 Design Rationale

Kasica et al. [43] structured a multi-table framework for data
wrangling. The framework includes 15 categories of transfor-
mations, and each may contain several subtypes. For exam-
ple, based on whether the operation modifies table schema,
Transform Tables includes two subtypes, i.e., Rearrange and
Reshape. Further, they designed icons for 21 (sub)types of
data transformations. These icons are intuitive and inspiring
and provide a good starting point for our glyph design. We
distinguish between an icon and a glyph, inwhich the former
is a visual representation only and irrelevant to data; in con-
trast, the latter, which iswidely used in various tasks to repre-
sent multidimensional data [19], [74], [78], [81], maps data to
visual channels such as color, size, etc. By analyzing all icons
and the parameter space, we distill the following design
guidelines in creating our glyph collection.

Input and Output Tables. Each icon designed by Kasica
et al. is composed of three main parts, i.e., an input table, an
output table, and an arrow indicating the transformation.
We follow this metaphor (Fig. 1a) in designing our glyph
collection because these are necessary for presenting a
transformation (R1). In the following description, we use
“data” to indicate data tables and use “table” to refer to the
table metaphor in a glyph.

XIONG ETAL.: VISUALIZING THE SCRIPTS OF DATAWRANGLINGWITH SOMNUS 2953

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

Table Shape. The shape of a table is affected by the num-
ber of explicit, implicit, and contextual columns/rows (R1,
R3). All explicit entities are depicted in the table due to their
importance. For implicit entities, we selectively choose one
that is representative. In some cases, “one” means “one
pair”. For example, when depicting “remove duplicate
rows”, we select two identical rows as implicit entities. Con-
textual entities are displayed for two reasons. First, it helps
to present the semantics of a transformation by posing a
contrast to explicit/implicit entities. Second, it retains the
table metaphor. For example, in “Create Table”, all entities
are contextual. We demonstrate 3� 3 contextual cells to
indicate an empty table. For other transformations, context
is limited to one or two columns/rows.

Cell Color. Color encoding is meaningful in Kasica et al.
[43]. It is designed for distinguishing cell types (e.g., title
cells are white while content cells are colored), indicating
the type of data object (e.g., column and row), depicting
unchanged columns/rows, and presenting correlated col-
umns/rows (e.g., the icon for Interpolate). The color
encoding of our glyph is primarily borrowed from Kasica
et al. Further, we extend prior work from two aspects.
First, we use white color to represent empty cells. At the
same time, title cells are colored dark gray. Second, we
use striped cells to depict those with an empty or blank
string (R4).

Out-Table Text. Some text is displayed outside the table.
For example, for transformations targeting specific rows by
row index, we present row index aside from the table (R3).
Besides, we present table names and the type of transforma-
tion that a function belongs to. Following the text in Tri-
facta [76], we present textual information below the input
and output tables to describe the semantics of transforma-
tions (Fig. 1c) (R1).

In-Table Text. Presenting data content is critical to assist-
ing data workers to understand a function (R1, R2). Due to
limited glyph size, only contents in explicit and implicit col-

umns/rows are depicted in the glyph (Fig. 1b). Usually, it is
not possible to present all values in these elements. Hence,
we randomly sample values from data. By encoding in-table
text, as well as out-table text, we are able to distinguish data
transformations with a subtle difference. For example, there
are four common subtypes of transformations for Create Col-
umns[43], e.g., creating manually (Fig. 2a), mutating from
other columns (example of Create Columns in Fig. 4), extract-
ing substring of one column (Fig. 2b), and merging multiple
columns (Fig. 2c). Another type of information shown in a
table is special symbols. For example, we use and to
illustrate sorting in a descending and ascending order,
respectively.

Other Considerations. Besides the aforementioned guide-
lines, we explore visualization techniques that enhance the
perception of data tables and transformation (Fig. 1d). First,
to indicate the shape of data, we design both horizontal and
vertical scroll bars in glyphs. The size of scroll bars is pro-
portional to the shape of data tables. We acknowledge that
this design cannot show a precise number of columns/
rows. Instead, it informs that the glyph presents a portion of
an entire data table (R2). Second, to emphasize the change
of a table (R1), we highlight the correlation between explicit
columns in input and output tables.

4.3 Results

Following the aforementioned design space, we derive 21
glyphs for data transformation. Besides, we create glyphs
for two more transformations. First, in Kasica et al. [43], Fold
and Unfold share one icon with different arrow directions.
We distinct the two operations with two glyphs. Second, we
add a glyph for Rearrange Columns because it is triggered by
a popular function, select, in dplyr. To save space, Fig. 4
illustrates 15 out of 23 glyphs, and the full glyph collection
can be found in the supplemental material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2022.3144975.

5 DESIGN OF SOMNUS

In this section, we present the design of SOMNUS, a pipeline
that accepts data tables and a piece of code as input, and
results in a visual representation to show the entire proce-
dure of data transformations. Code pieces may contain com-
plex control flow, including a conditional statement, loops,
function definition, etc. In this paper, we limit the scope to
code consisting of assignment statements only. Though
some modules are implemented based on specific program-

Fig. 1. We use Transform Columns as an example to showcase different
visual channels.

Fig. 2. By depicting in-table and out-table text, a glyph can differentiate different types of transformations. Taking Create Columns as an example, (a)
shows the creation by filling in values manually, (b) shows extracting values from existing columns, and (c) depicts merging values from existing
columns.

2954 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 6, JUNE 2023

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3144975
http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3144975

ming languages and toolkits, we argue that the design of
SOMNUS can be applied to different programming languages.
In the presentation, we use dplyr, a toolkit of R, as examples
by default. Fig. 3 shows the architecture of SOMNUS, which
consists of two core modules, i.e., Program Adaptor and
Visualization Generator.

5.1 Program Adaptor

Program Adaptor aims to generate a series of transforma-
tion specifications given data tables and a script. Though
we implement an adaptor for each programming language,
all adaptors share three common steps, i.e., Program Execu-
tion, Code Parser, and Transformation Inference. The
descriptions of this module are independent of program-
ming languages (R7).

5.1.1 Program Execution

After a script and data tables are fed into the Program
Adaptor module, the script will be executed using an inter-
preter based on programming languages. The primary goal
of this step is to obtain input and output data for each
function, which is beneficial for 1) providing data value
when plotting glyphs (R2) and 2) inferring the type of data
transformation for each function (R1) (see Transformation
Inference for details). The Program Execution steps auto-
matically insert statements for importing necessary librar-
ies to interpret and execute the script correctly.

5.1.2 Code Parser

Code Parser accepts a script as input and parses each line of
code to obtain 1) the name of the input and output table, 2)
function names, and 3) parameters of functions (R3). In some
toolkits, a transformation can be invoked through various
approaches. For example, given a data table, named
“tbl,” containing three columns in order, e.g., “column1”,
“column2”, and “column3”. Assume “tbl” is stored as Data-
Frame in Python, Rearrange Columns can be expressed as pan-
das.DataFrame(tbl, columns=[‘column2’, ‘column1’, ‘column3’]).
Also, the same transformation can be achieved by tbl
[[‘column2’, ‘column1’, ‘column3’]]. In the current implemen-
tation of SOMNUS, we only support statements that have
explicit function names and input and outputs.

Similar to Program Execution, results generated by Code
Parser are critical to inferring the type of transformations
(R1). Besides, tracing the input and output tables helps to
construct the provenance of data.

5.1.3 Transformation Inference

After parsing individual functions and their input and out-
put tables, we build a mapping between functions and the
type of transformations (R1). In most cases, one function is
mapped to one data transformation.We create rules formap-
ping the name and parameters of a function to one type of
transformation. For example, we map filter to Delete Rows,
separate to Separate Columns, and count to Summarize. How-
ever, function information is not enough in some cases. For
example, given the data table (“tbl”) mentioned above, the
statement select(tbl, “column3”, “column1”, “column2”) equals
to Rearrange Columns. On the other hand, if the input table
has four columns in order, e.g., “column3”, “column1”,
“column2”, and “column4”, the same statement results
Delete Columns as “column4” is omitted in the output table.
In this case, we derive the type of transformations by com-
paring the input table with the output.

We note that some functions involve a sequence of trans-
formations. Taking the data table (“tbl”) as an example, the
function select(tbl, column1, column4 = column2) first per-
forms Delete Columns by deleting “column3”. Then, it Trans-
form Columns by renaming “column2” to “column4”. In
these cases, we identify multiple transformations for a func-
tion. One challenge is to obtain input and output tables for
each transformation, which are critical to glyph generation.
The current prototype establishes rules and replaces a func-
tion with multiple ones, where each corresponds to a trans-
formation. Then, the entire script is executed again to derive
the input and output data tables.

To save screen space, some functions can be grouped and
merged. For example, the two functions, e.g., rename(tbl, col-
umn4 = column1) and rename(tbl, column5 = column2), can be
combined into one rename(tbl, column4 = column1, column5 =
column2). In such cases, we depict the two functions using
one data transformation. The current prototype supports
the combination of consecutive functions in three cases, i.e.,
Rename Columns, Delete Columns, and Delete Rows. We plan
to investigate more rules for combining the semantics of
functions in future research.

5.1.4 Failure Modes

To improve reliability, SOMNUS is able to dealwith five types of
failure modes. First, if the script contains operations that are
unsupported, SOMNUS can compile and run the script prop-
erly. However, there are no glyphs for these operations. Sec-
ond, if the function is not supported in the Program Adaptor,
such as drop_na in tidyr, SOMNUS shows the function name
only. Third, for operations that are not function-based, e.g.,
“df = df[df.col1 >0]” in Pandas, SOMNUS displays nothing on
the edges. Fourth, SOMNUS decomposes operations involving
many columns and rows into multiple ones and visualizes
them with a sequence of glyphs, as described in Section 5.1.3.
Finally, SOMNUS does not fully support the parsing of non-
assignment statements, such as loops or conditional state-
ments. We acknowledge that this policy may hinder data
workers from understanding the logic of the entire script. For
example, given a conditional statement like “if CONDITION
then OPERATION1 else OPERATION2”, SOMNUS displays only
one glyph representing either OPERATION1 or OPERA-
TION2 based on the results of ProgramExecution.

Fig. 3. The architecture of SOMNUS consists of two major modules: Pro-
gram Adaptor and Visualization Generator. The Program Adaptor
accepts a script and data tables as input and outputs a collection of
transformation specifications. The Visualization Generator generates
table provenance by utilizing the specifications.

XIONG ETAL.: VISUALIZING THE SCRIPTS OF DATAWRANGLINGWITH SOMNUS 2955

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

5.2 Visualization Generator

The result of Program Adaptor is a set of transformation
specifications accompanied by input and output data
tables. This module aims to generate visual representations
depicting both an overview and detailed information for
transformations.

5.2.1 Constructing Data Provenance

Data provenance can be formed as a graph, where nodes are
data tables and edges are data transformations (R5). The
provenance graph is layered, and we leverage the Eclipse
Layout Kernel [23] for positing graph nodes. As shown in
Fig. 5, each node is rectangular, and we depict useful table
information in each node, including the line index where
the table is created, the table name, and the size of the table.

Edges connecting nodes are data transformations. Accord-
ing to the number of input and output tables, we categorize

the edges into three types. In most cases (Fig. 8d), a transfor-
mation accepts a table as input and outputs a transformed
one.Wedepict the edge as a directed line. Second, some trans-
formations merge multiple data tables into one, such as
Extend, Supplement, and Match. These transformations are

Fig. 5. The transformation, Decompose, results in a divergence edge,
which is generated by two statements, profile = read.csv(”profile.csv”)
and gender = group_split(profile, Gender).

Fig. 4. Following Kasica et al. [43], we display 15 out of 23 transformations by two dimensions, i.e., the type of data object and five operation catego-
ries. All glyphs are generated based on real data tables and functions from tidyr [75] and dplyr [21]. The entire glyph collection can be found in the
supplemental material, available online, which is available online at https://github.com/xkKevin/Somnus.

2956 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 6, JUNE 2023

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

https://github.com/xkKevin/Somnus

shown as convergence edges (Fig. 7c). Similarly, transforma-
tions that result in multiple output tables from one input are
depicted as divergence edges, as shown in Fig. 5.

5.2.2 Presenting Glyphs

To present the details of data transformations, we depict
glyphs aside from each edge in the provenance graph (R6).
Since glyphs may contain in-table and out-table text, they
are placed horizontally without rotation for better readabil-
ity. For functions that are not supported by our glyph collec-
tion, no glyph is displayed.

5.3 Implementation

SOMNUS is implemented as a web-based client-server system.
The backend is implemented using flask, while the frontend
is built in Vue.js and D3.js [13]. The web interface consists of
four panels, i.e., a Data Panel, a Script Panel, a Table Panel,
and a Graph Panel. The Data Panel (Fig. 8a) allows users to
upload their input tables as needed. Users need to select a
programming language and copy-paste a piece of data
wrangling code to the Script Panel (Fig. 8b). Then the back-
end runs based on the input tables and the script provided
by the user. The Graph Panel (Fig. 8d) displays table prove-
nance (R5), while the Table Panel (Fig. 8c) is used to show
the intermediate tables generated in the process of data
wrangling (R2). To assist the investigation of lengthy table
provenance, the Graph Panel supports zooming and pan-
ning (R6).

Interactions across panels are integrated to facilitate the
exploration among script, data tables, and data provenance.
First, when a user clicks on a node (i.e., data table) in the
provenance graph, the Table Panel displays the detailed
table. Similarly, when clicking on edge (i.e., transformation)
in the graph, its function in the Script Panel is located and
highlighted, and vice versa.

We focus on data wrangling from two popular program-
ming languages, i.e., R and Python. Specifically, the current
prototype supports 25 commonly used functions from tidyr
[75] (e.g., separate, gather, spread, etc.) and dplyr[21] (e.g., fil-
ter, select, mutate, etc.), and ten functions from Pandas [64]
(e.g., pandas.unique, pandas.merge, pandas.concat, etc).

6 USER STUDY

To assess the effectiveness of the visualization design, we
conducted a controlled study centered on two high-level
questions: 1) does the glyph design improve user efficiency
in comprehending the semantics of data wrangling? and 2)
does the provenance graph facilitate the understanding of
data dependencies? We ran the evaluation using real-world
data tables and scripts written in the R programming lan-
guage. All documentation, including scripts, data tables,
questions, etc., are provided in the supplemental material,
available online.

6.1 Participants and Apparatus

We recruited 20 volunteers (4 females and 16 males) aged 22
to 35 (m ¼ 25:45, s ¼ 3:33). The majority of participants
(15=20) were postgraduate students majoring in Statistics or
Computer Science, while the others worked as data analysts

or algorithm engineers in a national research lab. They were
all proficient in programming using Python, JAVA, or
Javascript and had experience in data transformation. In
addition, to ensure that all participants had difficulties
understanding scripts, we only recruited those who had not
written a line of code in R. Participants completed the study
using a desktop computer (3.20GHz 8-Core Intel Core i7, 32
GBmemory) with a 27-inchmonitor (3840� 2160 resolution)
and an external mouse and keyboard, and the study was dis-
tributed through Google Chrome on aWindows 10machine.

6.2 Techniques

To our knowledge, no prior work targets visualizing the
semantics of data transformation. Hence, we compared the
visualization design with textual description derived from a
commercial data wrangling system, Trifacta [76]. Some
description was not directly supported by Trifacta, such as
mapping the values from one column into another (a sub-
type of Transform Columns). In these cases, we generated
text by combining the descriptions of two transformations,
e.g., create a new column from original columns and delete the
original ones (italic text will be replaced by column names).
To align with SOMNUS in describing a sequence of transfor-
mations, we included additional information in the textual
description, including line index, the shape of data tables,
and the output table name of a function.

The design of our glyph collection contained textual
information describing the type of transformation in the
glyph. We noted that the comparison between pure text and
visualization with text would be unfair. To evaluate the
effectiveness of visual representation, we removed the tex-
tual description of glyphs in the study. We envisioned that
our glyph design and SOMNUS would be more effective by
including text.

6.3 Tasks and Design

We performed a within-subject design with two experimen-
tal techniques and ten experimental tasks. To address any
memory learning effects, we created two different sets of
ten tasks. The orders of the two techniques and the task sets
were counterbalanced using a Latin square. Within each
technique, participants completed ten tasks which were
shown in a fixed order. Thus, the whole study contained 2
techniques � 2 sets � 10 tasks ¼ 40 trials. Each task trial
included a piece of code, a visual or textual explanation for
the code, and a multiple-choice question where each ques-
tion had one or more correct answers. In addition, the study
system provided data tables and documentations of func-
tions for reference. We chose the multiple-choice test for
evaluation because it could increase participants’ confi-
dence in completing tasks and be more convenient for statis-
tical analysis of test results over the constructed-response
test [47], [68]. In our study, all questions and choices are
carefully designed from varying perspectives of table
changes and dependencies to answer the above two high-
level questions. However, we do not guarantee they can
genuinely measure participants’ understanding as compre-
hension is abstract and hard to access directly.

The ten study tasks consisted of five function under-
standing tasks (Func) followed by five script understanding

XIONG ETAL.: VISUALIZING THE SCRIPTS OF DATAWRANGLINGWITH SOMNUS 2957

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

tasks (Script). Moreover, each question was required to select
all correct choices. Func focused on the semantics of individ-
ual functions, including the output tables and operations.
Example choices were statements such as, “The output table
has a different number of rows with the input table” and “This
function renames the column A to B”. Script focused on the
understanding of data provenance through a sequence of
functions. Example questions were, “Which data tables contrib-
ute to the creation of table A?” and “How many data transforma-
tions are performed from table A to B?” We carefully designed
the task questions and choices to avoid ambiguous answers
andmaintain the same difficulty across task sets. To assist the
exploration of data provenance, the study system supports
zooming and panning. A participant answered a question
correctly if and only if all correct optionswere selected.

6.4 Data

To evaluate how our visual design performed in real-world
scenarios, we selected candidate code pieces and data tables
provided by Kasica et al. [43], collected from Github [9],
[20]. We focused on functions belonging to two toolkits, i.e.,
dplyr [21] and tidyr [75]. We randomly chose a set of state-
ments for Func and consecutive code pieces for Script. Due
to the limitation of the programming adaptor, some state-
ments, or code pieces, were inadequate for our studies, such
as those without explicit function names and input tables.
Hence, we replaced these statements with their functional
alternatives. In addition, we removed comments to avoid
misleading.

We created two datasets, and each corresponded to one
task set. To maintain the same difficulty level across the two
datasets, we established three rules in dataset creation. First,
both datasets contained the same number of Combine Tables
and Separate Tables. Because these transformations involved
more data tables compared to the rest, they might pose chal-
lenges in understanding table provenance. Second, each
dataset included the same number of functions for Func and
Script. In our study, five functions were applied to Func,
and nine functions were used for Script. To keep the data-
sets distinct, functions in one dataset could not be reused in
the other. However, exceptions existed for two functions,
i.e., read.csv() and group_by(), to ensure that code pieces can
be correctly interpreted. Specifically, read.csv() loaded data
at the beginning of code pieces while group_by() served as a
prerequisite for other functions, such as summarise() and
mutate(), to achieve some transformations.

6.5 Procedure

The study beganwith a brief introduction to data transforma-
tion. Then, we collected demographic information of each
participant, including the experience of programming, age,
occupation, etc. Prior to the main experiment for each tech-
nique, participants performed ten training tasks with a sepa-
rate dataset. During training sessions, participants were
instructed to think aloud, and the experimenter helped
answer questions and overcome difficulties. We reminded
participants that they could always skip a task when they
were not confident about the answer. In themain experiment,
participants were asked to complete ten tasks with each
technique. The data tables and documentations of functions

provided by the study systemwere folded by default. Partici-
pants could click to expand this information for reference.
Our system recorded the clicks for further analysis. In addi-
tion, the system recorded task completion times and partic-
ipants’ answers. After the main experiment for each
technique, participants were asked to rate the usefulness and
intuitiveness of the technique using a seven-point Likert
scale. After the study, a semi-structured interview was con-
ducted to collect their feedbacks. We took notes during the
whole session. Each participant took approximately one hour
to finish the study and received 10 dollars as compensation.

6.6 Quantitative Results

Accuracy. The individual answer-level results of each ques-
tion across the two techniques are provided in the supple-
mental material, available online. We found that the
accuracies of Q1 in Func Set1 and Q4 in Func Set2 were very
low in both two techniques. There were two possible rea-
sons for the results. First, the semantics of some Combine
operations like Summarize and Supplement were hard to
describe, which involved the rule of combination, and the
number of rows and columns. Second, participants seldom
chose the NOTA option (i.e., “None of the above”), which was
the correct answer for the two questions. As P16 explained,
“When I am not sure about the answer, I tend to choose the one
that seems correct (instead of NOTA).” Besides, visual
descriptions’ accuracy was significantly higher than that of
textual descriptions (see Q5 in Func Set2 and Q4 in Func
Set1), which indicates that our visual design is superior to
text in describing complex operations, including fold and left
join. Fig. 6b depicts the results with a 95% confidence inter-
val. On average, participants achieved a much higher accu-
racy with visual description (m ¼ 0:85, s ¼ 0:16) than with
textual description (m ¼ 0:61, s ¼ 0:27) for all tasks. Espe-
cially for Func, participants got an average accuracy of 44%
(s ¼ 0:18) with the baseline technique. And they achieved
an accuracy of 75% (s ¼ 0:16) using our approach. In our
study, textual description described what the transforma-
tion was. However, it helped little in communicating how
the transformation performed. As P9 commented, “Though
the text told me that the function performs left join, I do not know
exactly how left join works.” On the contrary, visual descrip-
tion helped participants understand the semantics of trans-
formations that they were unfamiliar with.

Completion Time. We performed an independent-samples
t-test with a null hypothesis that the participants took the
same amount of time finishing tasks with each technique.
We found a marginally positive effect of our approach with
which participants completed Func faster than the baseline
technique (p < 0:1). We also ran a paired two-sample Wil-
coxon signed-rank test to identify whether the presentation
order of two techniques affected the task completion time.
The results indicated no significant effect of the order on the
completion time for Func (p ¼ 0:1536) while a notable signif-
icant effect for Script (p ¼ 0:0083). That is, participants, per-
formed faster using the later technique in Script.

Number of Clicks. In Func, participants expanded function
documentation and data Tables 2.15 times using textual
descriptions. On the contrary, they clicked 0.6 times using
our approach. Compared to the baseline approach, partici-
pants sought less information in completing the tasks. This

2958 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 6, JUNE 2023

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

result indicated that our approach helped participants
understand the semantics of transformations with necessary
visual encoding. The number of documentation and table
clicks was much fewer in Script, which might be because
this information helped little in script understanding tasks.

Preference. For comparing the helpfulness and interpret-
ability of the two techniques across ten tasks, we ran Mann-
Whitney’s U tests to evaluate the difference in the responses
of our seven-point Likert Scales. We found our technique
(m ¼ 6:55, s ¼ 0:61) was significantly more helpful in assist-
ing participants to understand transformation than textual
descriptions (m ¼ 4:45, s ¼ 1:43): U ¼ 34:5, p < 0:01. In
terms of interpretability, our technique (m ¼ 6:05, s ¼ 0:95)
was easier to understand than textual descriptions (m ¼ 4:40,
s ¼ 1:39):U ¼ 71, p < 0:01.

6.7 Qualitative Feedback

All participants showed great interest in the visualization
design. Some participants pointed out that data visualization
is a universal language that simplifies learning and commu-
nicating. For the Func tasks, participants appreciate the
design of glyphs. As P6 mentioned that “it (the glyph visuali-
zation) is intuitive and informative.” P14 added, “I do not need to
look up the documentation of functions because glyphs explain
all.” For the Script tasks, the node-link diagrampresents table
provenance using a sequence of glyphs, which is efficient for
navigation. As P3 noted that, “It is laborious to extract the table
dependencies from textual descriptions compared to the visual-
ization.” Besides, participants also provided valuable sugges-
tions for our design.

Comments on the Glyphs. The glyph design can be
improved from the following aspects. First, the color encod-
ing of different glyphs may be confusing. P8 noted, “I would
think they (columns with the same color in different glyphs) are the
same columns.” She further suggested, “Different columns
should be depicted using a different color (in the provenance
graph).” Second, some participants (P10, P14) pointed out
that text was superior to visualization in some cases. For
example, the filter function in R deletes rows due to some
conditions. When multiple conditions are passed as parame-
ters, our glyph design cannot distinguish whether BOTH
conditions are applied, or EITHER condition is used. On the
contrary, a textual description can articulate it clearly. P18
and P7 recommended integrating textual description and
visualization to utilize the strength of the two techniques.

Comments on the Provenance Graph. The design of the prove-
nance graphmay suffer from two issues. First, the provenance
graphwould be too longwhen the number of transformations
increases. As a result, participants continuously zoomed and

panned the graph in finishing tasks. P2 suggested that the
pipeline could be presented vertically so that he could explore
it using a scroll bar. In addition, P10 commented, “The pipeline
(provenance graph) should be folded by default, and can be expanded
on demand.” Second, some participants (P3, P5) suggested sup-
porting programs with complex control flow. P6 commented,
“The statements in the study are too simple. I wonder how the visu-
alization performs in programs with IF-ELSE (conditional state-
ment) or FOR (loop statement) statements.”

7 EXAMPLE APPLICATIONS

To demonstrate how SOMNUS can be applied to different
usage scenarios, we design and implement two prototypes
based on SOMNUS. The first prototype helps data scientists
validate the procedure of data transformation written in
Python, while the second reveals intermediate data transfor-
mations given source and target tables.

7.1 Double-Checking

In this study, we collaborate with two data scientists in a
national research lab. They usually work together to finish
an analytical report. One critical task in their work is valida-
tion, or called double-checking in practice. Specifically,
when a data scientist finishes a workflow, the other needs to
check and validate the entire workflow by scrutinizing the
code and independently reproducing the workflow. How-
ever, identifying errors in the code is not an easy task, which
requires a deep understanding of a large number of func-
tions and data models. Inspired by the real-world use case,
the first application illustrates how SOMNUS aids data scien-
tists in validating and debugging a script of the wrangling
process.

Assume Lucy and Jane are two data scientists working in
a national research lab. After Jane finishes a data transfor-
mation procedure written in Python, Lucy is invited to vali-
date the piece of code to ensure accuracy. The goal of the
code is to combine two tables [26] and compute average
iPhone unit scales and revenue across years. Lucy first
uploads the two input tables (Fig. 7b) in the Data Panel and
copy-pastes a code piece to the Script Panel. After clicking
“Upload and Run”, the provenance graph is displayed in
the Graph Panel. To examine each step, Lucy explores indi-
vidual transformations in the provenance graph by zoom-
ing and panning. A glyph showing the combination of two
tables catches her eye. As shown in Fig. 7c, the two tables
are combined along the row axis. However, Lucy makes
sure that the two tables should be concatenated by column
(Fig. 7d). To reason the result, she clicks the glyph to locate

Fig. 6. Among participants, (a) shows the average number of clicks in terms of two task sets and two techniques, (b) and (c) are the average accuracy
and completion time. (d) and (e) display user ratings in terms of helpfulness and interpretability. The error bars indicate the 95% confidence interval.

XIONG ETAL.: VISUALIZING THE SCRIPTS OF DATAWRANGLINGWITH SOMNUS 2959

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

and highlight the 15th line of code (Fig. 7a). She notices that
the parameter axis is not explicitly mentioned in the concat
function. By default, however, the concatenation is per-
formed along the row axis with implicit axis=0. Hence, Lucy
corrects the statement to rev_sales=pd.concat([s_sum,r_sum],
axis=1), and finally obtains the correct results.

7.2 MORPHEUS Revisited

MORPHEUS [25] is a program synthesis algorithm that gener-
ates a script for data processing. The algorithm accepts
multiple source tables and a target table as input and auto-
matically outputs lines of R code to reflect the process of
transformation. MORPHEUS is useful in a number of scenarios.
For example, the output script can automate the process of
data transformation and can be reused and revised for future
applications. The output of MORPHEUS, however, is hard to
understand due to obscure function usage and parameters.
In the second application, we apply SOMNUS to explain the
scripts generated by MORPHEUS. The adapted system shown
in Fig. 8 is almost identical to the SOMNUS system. The differ-
ence is threefold. First, the Data Panel accepts multiple
source tables and a target table, which are passed to MOR-

PHEUS on the server side. Second, based on code pieces
returned by MORPHEUS and data tables, SOMNUS runs and
yields a series of input and output tables for each function
and a table provenance and passes them to the client side.
Third, the Script Panel shows the script that is not editable.

The application is motivated by a real-world case from
StackOverflow [1]. Assume Devin has two original tables
(input1.csv, input2.csv) and one target table (output1.csv) at
hand. He first uploads those tables to the system to under-
stand the correct approach to transforming the original
tables to the target table. After clicking the “Upload and
Run” button, a piece of code is shown in the Script Panel,
and a provenance graph is displayed in the Graph Panel.

From the provenance graph, Devin sees seven edges, indicat-
ing that the entire process takes seven data transformations.

Devin has no prior knowledge about R and dplyr. To get
an idea of individual functions, such as mutate, he clicks the
8th line of code in the Script Panel (Fig. 8b). Then the trans-
formation and its input and output tables are located and
highlighted in the Graph Panel (Fig. 8d). He figures out that
the function creates a new column called “total” from “value”
divided by “size”. From the Script Panel, Devin observes two
select functions. He clicks the two lines of code and finds they
perform different transformations, i.e., one removes a col-
umn “value”while the other rearrange columns.

8 DISCUSSION

The evaluation shows that our glyph collection and SOMNUS

are effective in presenting data transformations, and SOMNUS

can be generalized to various programming languages and
example applications. Besides feedbacks and suggestions
listed in Section 6, we identify some limitations in the
design and implementation of SOMNUS.

First, the scalability of SOMNUS is limited in terms of the
number of functions and parameter combinations. The
Code Parser and Transformation Inference modules of SOM-

NUS are customized for each function and parameter. The
current prototype supports 25 functions from tidyr and
dplyr in R and ten functions from Pandas in Python with a
small set of parameters. Extending our work to a number of
functions and parameters is possible. However, it would be
tedious. To align with a large number of functions that are
typically used for data transformation, a promising direc-
tion is to explore learning-based algorithms that can map a
function and its parameters to a type of transformation at
scale. This work can act as a starting point for generating
training data for such algorithms. In addition, if a lengthy

Fig. 7. The application of SOMNUS in validating the process of data transformation written in Python. SOMNUS takes a piece of code (a) and data tables
(b) as input, and outputs a visualization showing table provenance across data transformations. (c) shows a snippet of the visualization. By exploring
the table provenance, a data worker can identify errors in the transformation with ease. (d) depicts the correct transformation beared in mind by data
workers.

2960 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 6, JUNE 2023

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

script contains numerous operations, the provenance graph
would be too long to navigate. We acknowledge that the
basic layout of transformation workflowswill result in node-
link diagramswith a suboptimal aspect ratio that require fre-
quent panning/zooming.We notice that a number of interac-
tion techniques are designed to navigate lengthy content. For
example, focus+context screens [5] can facilitate the explora-
tion of multiscale documents. In addition, the collapse-to-
zoom navigation[6] is proposed to explore lengthy web
pages. In future iterations, we plan to integrate advanced
interaction techniques to alleviate the issue.

Second, the generalizability of the glyph space has yet
been explored. By depicting in-table and out-table text in
the glyph, the glyph collection can be generalized to a larger
number of transformations, as shown in Fig. 2. On the other
hand, the glyph design lacks support for some commonly
used data transformations, such as Transpose. To what
extent does the glyph space adapts to transformations is
unknown. In future research, we plan to explore the map-
ping between the glyph space and transformation space to
understand the scope.

Third, the presentation of in-table textmay result in incon-
sistencies in some data tables. For example, in Fig. 4, theCom-
bine Rows shows the results of the colMeans function in R,
which derives the mean value for each column. However,
the mean value of the input table does match the results in
the output table. That is because all in-table text is derived
from the original data. In the current stage, we combine tex-
tual description and visualization in the glyph design to alle-
viate the weakness caused by inconsistencies. In addition, if
the text in glyphs, including column names, cell contents,
and summary descriptions, is long, it can not be fully dis-
played by default. This can be difficult for users to spot their
difference, especially when the text has the same prefix. Cur-
rently, the text elision issue is resolved through interaction.

That is, when a user hovers over the omitted text in the
glyph, the whole text will be displayed.

Fourth, the shortcoming of individual glyphs has yet been
explored. Though the controlled study reveals the overall
effectiveness of visual description compared to textual
description (Func in Fig. 6), it is far from enough to exploit
the shortcoming of individual glyphs, which requires enu-
merating possible functions and their parameters. For exam-
ple, the glyph designed for Delete Rows may be ineffective
when a data table does not contain counterexamples.
Because the semantics of filtering conditions can hardly be
visualized without counterexamples. To obtain a compre-
hensive understanding of the performance of the glyph col-
lection, we plan to validate individual glyphs using various
functions and parameter combinations and conduct a large-
scale user study for evaluation.

Fifth, the color encoding of glyphs may cause confusion
in the provenance graph. As one participant in the user
study pointed out, columns with the same color in different
glyphs may be mistakenly regarded as identical columns.
We intend to combine visual designs with interactions to
resolve this ambiguity in our future work.

9 CONCLUSION AND FUTURE WORK

In this paper, we develop visualization techniques to illus-
trate the semantics of code pieces in the context of data
transformation. To present individual transformations, we
explore design space consisting of two primary dimensions,
i.e., key parameters to be encoded and possible visual chan-
nels that can be mapped. Based on the design space, we
derive a collection of glyphs targeting 23 types of transfor-
mations. We argue that the glyph collection can adapt to a
broader range of transformations by depicting in-table and
out-table text. To illustrate a sequence of statements, we

Fig. 8. By combining MORPHEUS, our system generates and illustrates a series of data transformations given source data tables and a target table. The
system comprises four panels, i.e., a Data Panel allowing users to upload data tables, a Script Panel showing code pieces in R, a Table Panel shows
intermediate data tables, and a Graph Panel that depicts table provenance.

XIONG ETAL.: VISUALIZING THE SCRIPTS OF DATAWRANGLINGWITH SOMNUS 2961

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

design and develop SOMNUS, a pipeline that accepts code
pieces and data tables as input and generates a graph show-
ing table provenance across a series of data transformations.
The results of a controlled study have demonstrated the
effectiveness and intuitiveness of the visualization design
for our study participants. Through example applications,
we show how SOMNUS can be adapted to different program-
ming languages and usage scenarios.

In the future, we plan to enhance SOMNUS by supporting a
large number of functions and parameters in dplyr (R), tidyr
(R), and Pandas (Python). However, the manual enhance-
ment could be laborious and tedious. We plan to investigate
algorithms that automatically map statements to data trans-
formations to facilitate the adaption of functions and
parameters. Next, since complex control flow is commonly
used in data transformation, we would like to explore how
to visualize conditional statements and loops in the prove-
nance graph.

ACKNOWLEDGMENTS

We are grateful to our study participants and anonymous
reviewers for their insightful feedback.

REFERENCES

[1] Recursive error in dplyr mutate. 2015. [Online]. Available: https://
stackoverflow.com/questions/30374143/recursive-error-in-dplyr-
mutate

[2] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and
M. Stonebraker, “DataXFormer: A robust transformation dis-
covery system,” in Proc. IEEE 32nd Int. Conf. Data Eng., 2016,
pp. 1134–1145.

[3] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. L. Su, and S.
Z. Guyer, “Heapviz: Interactive heap visualization for program
understanding and debugging,” in Proc. 5th Int. Symp. Softw. Vis.,
2010, pp. 53–62.

[4] L. Bartram, M. Correll, and M. Tory, “Untidy data: The unreason-
able effectiveness of tables,” IEEE Trans. Vis. Comput. Graphics,
vol. 28, no. 1, pp. 686–696, Jan. 2022.

[5] P. Baudisch, N. Good, V. Bellotti, and P. Schraedley, “Keeping
things in context: A comparative evaluation of focus plus context
screens, overviews, and zooming,” in Proc. SIGCHI Conf. Hum.
Factors Comput. Syst., 2002, pp. 259–266.

[6] P. Baudisch, X. Xie, C. Wang, and W.-Y. Ma, “Collapse-to-zoom:
Viewing web pages on small screen devices by interactively
removing irrelevant content,” in Proc. 17th Annu. ACM Symp. User
Interface Softw. Technol., 2004, pp. 91–94.

[7] F. Beck, F. Hollerich, S. Diehl, and D. Weiskopf, “Visual monitor-
ing of numeric variables embedded in source code,” in Proc. 1st
IEEE Work. Conf. Softw. Vis., 2013, pp. 1–4.

[8] F. Beck, O. Moseler, S. Diehl, and G. D. Rey, “In situ under-
standing of performance bottlenecks through visually aug-
mented code,” in Proc. 21st Int. Conf. Prog. Comprehension,
2013, pp. 63–72.

[9] beecycles, “Power of irma,” 2018. [Online]. Available: https://
github.com/beecycles/Power_of_Irma

[10] A. Bigelow, C. Nobre, M. Meyer, and A. Lex, “Origraph: Interac-
tive network wrangling,” in Proc. IEEE Conf. Vis. Anal. Sci. Tech-
nol., 2019, pp. 81–92.

[11] C. Bors, T. Gschwandtner, and S. Miksch, “Capturing and visual-
izing provenance from data wrangling,” IEEE Comput. Graph.
Appl., vol. 39, no. 6, pp. 61–75, Nov./Dec. 2019.

[12] M. Bostock, “Visualizing algorithms,” 2014. [Online]. Available:
https://bost.ocks.org/mike/algorithms/

[13] M. Bostock, V. Ogievetsky, and J. Heer, “D data-driven doc-
uments,” IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12,
pp. 2301–2309, Dec. 2011.

[14] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive record/
replay for web application debugging,” in Proc. 26th Annu. ACM
Symp. User Interface Softw. Technol., 2013, pp. 473–484.

[15] J. Cheon, D. Kang, and G. Woo, “VizMe: An annotation-based pro-
gram visualization system generating a compact visualization,” in
Proc. Int. Conf. Data Eng., 2019, pp. 433–441.

[16] N. Chotisarn et al., “A systematic literature review of modern soft-
ware visualization,” J. Vis., vol. 23, no. 4, pp. 539–558, 2020.

[17] code2flow, “Online interactive code to flowchart converter.”
Accessed: Jan. 29, 2022. [Online]. Available: https://app.
code2flow.com/

[18] C. Demetrescu, I. Finocchi, and J. T. Stasko, “Specifying algorithm
visualizations: Interesting events or state mapping?,” in Proc.
Softw. Vis., 2002, pp. 16–30.

[19] Z. Deng et al., “Compass: Towards better causal analysis of urban
time series,” IEEE Trans. Vis. Comput. Graphics, vol. 28, no. 1,
pp. 1051–1061, Jan. 2022.

[20] B. S. D. Desk, “Baltimore police overtime in fiscal years 2018 and
2019,” 2020. [Online]. Available: https://github.com/baltimore-
sun-data/baltimore-police-overtime

[21] dplyr, “R package: Dplyr v0.7.8.” Accessed: Jan. 29, 2022. [Online].
Available: https://www.rdocumentation.org/packages/dplyr/
versions/0.7.8

[22] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani, “Wrex: A
unified programming-by-example interaction for synthesizing
readable code for data scientists,” in Proc. CHI Conf. Hum. Factors
Comput. Syst., 2020, pp. 1–12.

[23] Eclipse, “Eclipse layout kernel (ELK).” Accessed: Jan. 29, 2022.
[Online]. Available: https://www.eclipse.org/elk/

[24] R. Faust, K. Isaacs, W. Z. Bernstein, M. Sharp, and C. Scheidegger,
“Anteater: Interactive visualization for program understanding,”
2020, arXiv:1907.02872.

[25] Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and S. Chaudhuri,
“Component-based synthesis of table consolidation and trans-
formation tasks from examples,” ACM SIGPLAN Notices, vol. 52,
no. 6, pp. 422–436, 2017.

[26] B. Figures, “Apple iphone unit sales and revenue,” 2021. [Online].
Available: https://barefigur.es/companies/apple/iphone/

[27] D. Fisher, “Animation for visualization: Opportunities and
drawbacks,” Beautiful Visualization, O’Reilly Media, 2010.

[28] S. Grissom, M. F. McNally, and T. Naps, “Algorithm visualization
in CS education: Comparing levels of student engagement,” in
Proc. ACM Symp. Softw. Vis., 2003, pp. 87–94.

[29] P. J. Guo, “Online python tutor: Embeddable web-based program
visualization for CS education,” in Proc. 44th ACM Tech. Symp.
Comput. Sci. Educ., 2013, pp. 579–584.

[30] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer, “Proactive
wrangling: Mixed-initiative end-user programming of data trans-
formation scripts,” in Proc. 24th Annu. ACM Symp. User Interface
Softw. Technol., 2011, pp. 65–74.

[31] S. Hansen, N. H. Narayanan, and M. Hegarty, “Designing educa-
tionally effective algorithm visualizations,” J. Vis. Lang. Comput.,
vol. 13, no. 3, pp. 291–317, 2002.

[32] D. R. Hanson and J. L. Korn, “A simple and extensible graphical
debugger,” in Proc. USENIX Annu. Tech. Conf., 1997, pp. 183–174.

[33] M. Harward, W. Irwin, and N. Churcher, “In situ software visual-
isation,” in Proc. 21st Australian Softw. Eng. Conf., 2010, pp. 171–
180.

[34] J. Heer and A. Perer, “Orion: A system for modeling, transforma-
tion and visualization of multidimensional heterogeneous net-
works,” Inf. Vis., vol. 13, no. 2, pp. 111–133, 2014.

[35] J. Hoffswell, A. Satyanarayan, and J. Heer, “Visual debugging
techniques for reactive data visualization,” Comput. Graph. Forum,
vol. 35, pp. 271–280, 2016.

[36] J. Hoffswell, A. Satyanarayan, and J. Heer, “Augmenting code
with in situ visualizations to aid program understanding,” in
Proc. CHI Conf. Hum. Factors Comput. Syst., 2018, pp. 1–12.

[37] D. Huynh, “Openrefine,” 2021. [Online]. Available: https://
openrefine.org

[38] J. P. Inala and R. Singh, “WebRelate: Integrating web data with
spreadsheets using examples,” Proc. ACM Program. Lang., vol. 2,
no. POPL, pp. 1–28, 2017.

[39] Z. Jin, M. R. Anderson, M. Cafarella, and H. Jagadish, “Foofah:
Transforming data by example,” in Proc. ACM Int. Conf. Manage.
Data, 2017, pp. 683–698.

[40] Jupyter, “Jupyter notebook,” 2021. [Online]. Available: https://
jupyter.org

[41] S. Kandel et al., “Research directions in data wrangling: Visualiza-
tions and transformations for usable and credible data,” Inf. Vis.,
vol. 10, no. 4, pp. 271–288, 2011.

2962 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 6, JUNE 2023

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

https://stackoverflow.com/questions/30374143/recursive-error-in-dplyr-mutate
https://stackoverflow.com/questions/30374143/recursive-error-in-dplyr-mutate
https://stackoverflow.com/questions/30374143/recursive-error-in-dplyr-mutate
https://github.com/beecycles/Power_of_Irma
https://github.com/beecycles/Power_of_Irma
https://bost.ocks.org/mike/algorithms/
https://app.code2flow.com/
https://app.code2flow.com/
https://github.com/baltimore-sun-data/baltimore-police-overtime
https://github.com/baltimore-sun-data/baltimore-police-overtime
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8
https://www.eclipse.org/elk/
https://barefigur.es/companies/apple/iphone/
https://openrefine.org
https://openrefine.org
https://jupyter.org
https://jupyter.org

[42] S. Kandel, A. Paepcke, J. Hellerstein, and J.Heer, “Wrangler: Interac-
tive visual specification of data transformation scripts,” in Proc. SIG-
CHI Conf. Hum. Factors Comput. Syst., 2011, pp. 3363–3372.

[43] S. Kasica, C. Berret, and T. Munzner, “Table scraps: An actionable
framework for multi-table data wrangling from an artifact study
of computational journalism,” IEEE Trans. Vis. Comput. Graphics,
vol. 27, no. 2, pp. 957–966, Feb. 2021.

[44] M. Khan, L. Xu, A. Nandi, and J. M. Hellerstein, “Data tweening:
Incremental visualization of data transforms,” Proc. VLDB Endow-
ment, vol. 10, no. 6, pp. 661–672, 2017.

[45] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging
interface for asking questions about program behavior,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., 2004, pp. 151–158.

[46] D. A. Kosower, J. J. Lopez-Villarejo, and S. Roubtsov, “Flowgen:
Flowchart-based documentation framework for C++,” in Proc.
IEEE 14th Int. Work. Conf. Source Code Anal. Manipulation, 2014,
pp. 59–64.

[47] W. L. Kuechler and M. G. Simkin, “How well do multiple choice
tests evaluate student understanding in computer programming
classes?,” J. Inf. Syst. Educ., vol. 14, no. 4, 2003, Art. no. 389.

[48] C. Lewis and G. Olson, “Can principles of cognition lower the bar-
riers to programming?” in Proc. 2nd Workshop Empir. Stud. Pro-
grammers, 1987, pp. 248–263.

[49] T. Lieber, J. R. Brandt, and R. C.Miller, “Addressingmisconceptions
about code with always-on programming visualizations,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., 2014, pp. 2481–2490.

[50] H. Lieberman and C. Fry, “ZStep 95: A reversible, animated
source code stepper,” in Proc. Softw. Vis., Program. Multimedia
Exp., 1997, pp. 277–292.

[51] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau, “End-user
programming of mashups with vegemite,” in Proc. 14th Int. Conf.
Intell. User Interfaces, 2009, pp. 97–106.

[52] J. Liu, N. Boukhelifa, and J. R. Eagan, “Understanding the role of
alternatives in data analysis practices,” IEEE Trans. Vis. Comput.
Graphics, vol. 26, no. 1, pp. 66–76, Jan. 2020.

[53] S. Liu et al., “Steering data quality with visual analytics: The
complexity challenge,” Vis. Informat., vol. 2, no. 4, pp. 191–197,
2018.

[54] Z. Liu, S. B. Navathe, and J. T. Stasko, “Network-based visual
analysis of tabular data,” in Proc. IEEE Conf. Vis. Anal. Sci. Tech-
nol., 2011, pp. 41–50.

[55] J. Morcos, Z. Abedjan, I. F. Ilyas, M. Ouzzani, P. Papotti, and
M. Stonebraker, “DataXFormer: An interactive data transforma-
tion tool,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015,
pp. 883–888.

[56] T. Munzner, “A nested model for visualization design and vali-
dation,” IEEE Trans. Vis. Comput. Graphics, vol. 15, no. 6, pp. 921–928,
Nov./Dec. 2009.

[57] L. Nguyen, S. Kr€uger, P. Hill, K. Ali, and E. Bodden, “VisuFlow: A
debugging environment for static analyses,” in Proc. IEEE/ACM
40th Int. Conf. Softw. Eng., Companion, 2018, pp. 89–92.

[58] C. Niederer, H. Stitz, R. Hourieh, F. Grassinger, W. Aigner, andM.
Streit, “TACO: Visualizing changes in tables over time,” IEEE
Trans. Vis. Comput. Graphics, vol. 24, no. 1, pp. 677–686, Jan. 2018.

[59] S. Oney and B. Myers, “FireCrystal: Understanding interactive
behaviors in dynamic web pages,” in Proc. IEEE Symp. Vis. Lang.
Hum.-Centric Comput., 2009, pp. 105–108.

[60] A. Oy, “Visustin v7 flow chart generator,” 2013. [Online]. Avail-
able: https://www.aivosto.com/visustin.html

[61] X. Pu, S. Kross, J. M. Hofman, and D. G. Goldstein, “Datamations:
Animated explanations of data analysis pipelines,” in Proc. CHI
Conf. Hum. Factors Comput. Syst., 2021, pp. 1–14.

[62] Y. Qian and J. Lehman, “Students’ misconceptions and other diffi-
culties in introductory programming: A literature review,” ACM
Trans. Comput. Educ., vol. 18, no. 1, pp. 1–24, 2017.

[63] E. D. Ragan, A. Endert, J. Sanyal, and J. Chen, “Characterizing
provenance in visualization and data analysis: An organizational
framework of provenance types and purposes,” IEEE Trans. Vis.
Comput. Graphics, vol. 22, no. 1, pp. 31–40, Jan. 2016.

[64] J. Reback et al., “pandas-dev/pandas: Pandas 1.4.0,” Zenodo, Jan.
2022. [Online]. Available: https://doi.org/10.5281/zenodo.5893288

[65] C. A. Shaffer, M. Akbar, A. J. D. Alon, M. Stewart, and S. H.
Edwards, “Getting algorithm visualizations into the classroom,” in
Proc. 42nd ACMTech. Symp. Comput. Sci. Educ., 2011, pp. 129–134.

[66] C. A. Shaffer, M. Cooper, and S. H. Edwards, “Algorithm visuali-
zation: A report on the state of the field,” in Proc. 38th SIGCSE
Tech. Symp. Comput. Sci. Educ., 2007, pp. 150–154.

[67] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again:
Why is it difficult for developers to learn another programming
language?,” in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng., 2020,
pp. 691–701.

[68] M. G. Simkin and W. L. Kuechler, “Multiple-choice tests and stu-
dent understanding: What is the connection?,” Decis. Sci. J. Innov.
Educ., vol. 3, no. 1, pp. 73–98, 2005.

[69] WestWind Soft, “Autoflowchart.” Accessed: Jan. 29, 2022. [Online].
Available: https://autoflowchart.soft32.com/

[70] T. Software, “Tableau prep builder,” 2021. [Online]. Available:
https://www.tableau.com/products/prep

[71] J. Sorva, V. Karavirta, and L. Malmi, “A review of generic pro-
gram visualization systems for introductory programming educa-
tion,” ACM Trans. Comput. Educ., vol. 13, no. 4, pp. 1–64, 2013.

[72] J. Sundararaman and G. Back, “HDPV: Interactive, faithful, in-
vivo runtime state visualization for C/C++ and Java,” in Proc. 4th
ACM Symp. Softw. Vis., 2008, pp. 47–56.

[73] B. Swift, A. Sorensen, H. Gardner, and J. Hosking, “Visual code
annotations for cyberphysical programming,” in Proc. 1st Int.
Workshop Live Program., 2013, pp. 27–30.

[74] T. Tang, Y. Wu, L. Yu, Y. Li, and Y. Wu, “VideoModerator:
A risk-aware framework for multimodal video moderation in
E-commerce,” IEEE Trans. Vis. Comput. Graphics, vol. 28, no. 1,
pp. 846–856, Jan. 2022.

[75] tidyr, “R package: Tidyr v1.1.3.” Accessed: Jan. 29, 2022. [Online].
Available: https://www.rdocumentation.org/packages/tidyr/
versions/1.1.3

[76] Trifacta, “Trifacta wrangler,” 2021. [Online]. Available: https://
www.trifacta.com/products/wrangler-editions/#wrangler

[77] J. Urquiza-Fuentes and J. A. Vel�azquez-Iturbide, “A survey of
program visualizations for the functional paradigm,” in Proc.
Prog. Vis. Workshop, 2004, pp. 2–9.

[78] J. Wang, J. Wu, A. Cao, Z. Zhou, H. Zhang, and Y. Wu, “Tac-
Miner: Visual tactic mining for multiple table tennis matches,”
IEEE Trans. Vis. Comput. Graphics, vol. 27, no. 6, pp. 2770–2782,
Jun. 2021.

[79] H. Wickham, R. François, L. Henry, and K. M€uller, “dplyr: A gram-
mar of data manipulation (R package version 1.0. 2, 2020)”, 2021.
[Online]. Available: https://CRAN.R-project.org/package=dplyr

[80] H. Wickham, “tidyr: Tidy messy data. R package version 1.0. 2,”
2020. [Online]. Available: https://CRAN.R-project.org/
package=tidyr

[81] L. Ying et al., “GlyphCreator: Towards example-based automatic
generation of circular glyphs,” IEEE Trans. Vis. Comput. Graphics,
vol. 28, no. 1, pp. 400–410, Jan. 2022.

[82] A. Zeller and D. L€utkehaus, “DDD–A free graphical front-end for
unix debuggers,” ACM SIGPLAN Notices, vol. 31, no. 1, pp. 22–27,
1996.

Kai Xiong received the bachelor’s degree in com-
puter science from Xidian University, China. He is
currently working toward the PhD degree with the
State Key Laboratory of CAD&CG, Zhejiang Uni-
versity, China, and works under the supervision of
Prof. Yingcai Wu. His research interests center on
visual analytics and datawrangling. He is also inter-
ested in how to apply artificial intelligence to data
visualization.

Siwei Fu received the PhD degree in computer
science and engineering from the Hong Kong
University of Science and Technology, Hong Kong.
He is currently an associate research scientist in
ZhejiangLab, China.His research interests include:
Visual analytics, intelligent user interface, and
natual language interface. For more information,
please visit https://fusiwei339.bitbucket.io/

XIONG ETAL.: VISUALIZING THE SCRIPTS OF DATAWRANGLINGWITH SOMNUS 2963

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

https://www.aivosto.com/visustin.html
https://doi.org/10.5281/zenodo.5893288
https://autoflowchart.soft32.com/
https://www.tableau.com/products/prep
https://www.rdocumentation.org/packages/tidyr/versions/1.1.3
https://www.rdocumentation.org/packages/tidyr/versions/1.1.3
https://www.trifacta.com/products/wrangler-editions/#wrangler
https://www.trifacta.com/products/wrangler-editions/#wrangler
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://fusiwei339.bitbucket.io/

Guoming Ding received the BS degree in mecha-
nical engineering from Xi’an Jiaotong University,
China, in 2020. He is currently working toward
the master’s degree with the State Key Lab of
CAD&CG, Zhejiang University, China. His research
interests mainly include the visualization and
causal analysis.

Zhongsu Luo received the BS degree in software
engineering from the Zhejiang University of Tech-
nology, China, in 2020. He is currently working
toward the master’s degree with the Zhejiang Uni-
versity of Technology, China. His research interests
include the visualization, and visual analysis.

Rong Yu received the master’s degree in visual
communication design from Hangzhou Normal
University, China, in 2015. She is currently a
senior research engineer in Zhejiang Lab, China.
She has eight years of expertise in graphic
design and UI/UX design. For more information,
please visit https://dribbble.com/yurongt.

Wei Chen is currently a professor with the State
Key Lab of CAD&CG, Zhejiang University, China.
His research interests include visualization and
visual analysis. He has published more than 30
IEEE/ACM Transactions and IEEE VIS papers. He
actively served as a guest or associate editor of
IEEE Transactions on Visualization and Computer
Graphics, IEEE Transactions on Intelligent Trans-
portation Systems, and Journal of Visualization.
For more information, please visit http://www.cad.
zju.edu.cn/home/chenwei/

Hujun Bao is currently a professor with the State
Key Laboratory of CAD&CG and the College of
Computer Science and Technology, Zhejiang Uni-
versity Zhejiang, China. He leads the 3D graphics
computing group in the lab, which mainly makes
researches on geometry computing, 3D visual
computing, real-time rendering, and their applica-
tions. His research goal is to investigate the funda-
mental theories and algorithms to achieve good
visual perception for interactive digital environ-
ments, and develop related systems.

Yingcai Wu received the PhD degree in com-
puter science from the Hong Kong University of
Science and Technology. He is currently a
professor at the State Key Lab of CAD\&CG, Zhe-
jiang University, China. Prior to his current posi-
tion, he was a postdoctoral researcher at the
University of California, Davis from 2010 to 2012,
and a researcher in Microsoft Research Asia
from 2012 to 2015. His primary research interests
include information visualization and visual ana-
lytics, with focuses on sports science and urban

computing. For more information, please visit http://www.ycwu.org.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2964 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 6, JUNE 2023

Authorized licensed use limited to: Zhejiang University. Downloaded on May 08,2023 at 06:37:52 UTC from IEEE Xplore. Restrictions apply.

https://dribbble.com/yurongt
http://www.cad.zju.edu.cn/home/chenwei/
http://www.cad.zju.edu.cn/home/chenwei/
http://www.ycwu.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

